Quasi exactly solvable quantum lattice solitons
نویسندگان
چکیده
We extend the exactly solvable Hamiltonian describing f quantum oscillators considered recently by J. Dorignac et al. by means of a new interaction which we choose as quasi exactly solvable. The properties of the spectrum of this new Hamiltonian are studied as function of the new coupling constant. This Hamiltonian as well as the original one are also related to adequate Lie structures. [email protected] [email protected] [email protected]
منابع مشابه
Multi-Particle Quasi Exactly Solvable Difference Equations
Several explicit examples of multi-particle quasi exactly solvable ‘discrete’ quantum mechanical Hamiltonians are derived by deforming the well-known exactly solvable multi-particle Hamiltonians, the Ruijsenaars-Schneider-van Diejen systems. These are difference analogues of the quasi exactly solvable multi-particle systems, the quantum Inozemtsev systems obtained by deforming the well-known ex...
متن کاملQuasi-Exactly Solvable Systems and Orthogonal Polynomials
This paper shows that there is a correspondence between quasi-exactly solvable models in quantum mechanics and sets of orthogonal polynomials {Pn}. The quantum-mechanical wave function is the generating function for the Pn(E), which are polynomials in the energy E. The condition of quasi-exact solvability is reflected in the vanishing of the norm of all polynomials whose index n exceeds a criti...
متن کاملQuasi Exactly Solvable Difference Equations
Several explicit examples of quasi exactly solvable ‘discrete’ quantum mechanical Hamiltonians are derived by deforming the well-known exactly solvable Hamiltonians of one degree of freedom. These are difference analogues of the well-known quasi exactly solvable systems, the harmonic oscillator (with/without the centrifugal potential) deformed by a sextic potential and the 1/ sin x potential de...
متن کاملSupersymmetric Method for Constructing Quasi-Exactly and Conditionally-Exactly Solvable Potentials
Using supersymmetric quantum mechanics we develop a new method for constructing quasi-exactly solvable (QES) potentials with two known eigenstates. This method is extended for constructing conditionally-exactly solvable potentials (CES). The considered QES potentials at certain values of parameters become exactly solvable and can be treated as CES ones.
متن کاملOn the Duality of Quasi-Exactly Solvable Problems
It is demonstrated that quasi-exactly solvable models of quantum mechanics admit an interesting duality transformation which changes the form of their potentials and inverts the sign of all the exactly calculable energy levels. This transformation helps one to reveal some new features of quasi-exactly solvable models and associated orthogonal polynomials. [email protected] [email protected]...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008